
International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.2, No. 1 (2006), pp. 100-104
© Research India Publications http://www.ijcir.info

Using Support Vector Machine to Detect Unknown

Computer Viruses

Bo-yun Zhang1,2, Jian-ping Yin1, Jin-bo Hao1, Ding-xing Zhang1 and Shu-lin Wang1

1School of Computer Science, National University of Defense Technology,
Changsha 410073, China
hnjxzby@yahoo.com.cn

2Department of Computer Science, Hunan Public Security College,

 Changsha 410138, China

Abstract: A novel method based on support vector machine

(SVM) is proposed for detecting computer virus. By utilizing
SVM, the generalizing ability of virus detection system is still
good even the sample dataset size is small. First, the research
progress of computer virus detection is recalled and algorithm of
SVM taxonomy is introduced. Then the model of a virus
detection system based on SVM and virus detection engine are
presented respectively. An experiment using system API
function call trace is given to illustrate the performance of this
model. Finally, comparison of detection ability between the
above detection method and other is given. It is found that the
detection system based on SVM needs less priori knowledge
than other methods and can shorten the training time under the
same detection performance condition.

Keywords: computer virus, API function calls, Support Vector
machine, virus detection.

I. Introduction

Excellent technology exists for detecting known malicious
executables. Software for virus detection has been quite
successful, and programs such as McAfee Virus Scan and
Norton AntiVirus are ubiquitous. These programs search
executable code for known patterns, and this method is
problematic. One shortcoming is that one must obtain a copy
of a malicious program before extracting the pattern
necessary for its detection. Obtaining copies of new or
unknown malicious programs usually entail them infecting or
attacking a computer system.

In this paper, we propose a novel method to detect computer
viruses through SVM [1]. Our efforts to address this problem
have resulted in a fielded application, built using techniques
from statistical pattern recognition and machine learning. The
Viruses Classification System currently detects unknown
malicious executables code without removing any
obfuscation. To our knowledge, the experiment is the first
time to established methods based on SVM applying to detect
unknown computer viruses.

In the following sections, we first describe related research
in the area of computer viruses detection. Then we illustrate
the architecture of our detect model in section III. Section IV
introduces the classification algorithm. Section V details the
method of extraction feature from program, and stating the
detection engine work procedure. Section VI shows the
implementation and experiment results. We state our
conclusion in Section VII.

II. Related work

So far, there have been few attempts to use machine learning
and data mining for the purpose of identifying new or
unknown malicious code.

In an early attempt, Lo et al. [2] conducted an analysis of
several programs evidently by hand and identified tell-tale
signs, which subsequently be used to filter new programs.
Researchers at IBM's T.J.Watson Research Center have
investigated neural networks for virus detection [3] and have
incorporated a similar approach for detecting boot-sector
viruses into IBM's Anti-Virus software.

More recently, instead of focusing on boot-sector viruses,
Schultz et al. [4] used data mining methods, such as naïve
Bayes, to detect malicious code. The Bloodhound technology
of Symantec Inc., uses heuristics for detecting malicious code
[5]. Szappanos [6] used code normalization techniques to
detect polymorphic viruses. Normalization techniques
remove junk code & white spaces, and comments in programs
before they generate virus signature.

To improve the performance of the detector mentioned
above, lots of malicious and benign codes as training dataset
should be collected. And they would consume lots of times
when training the classifiers. Aid to solve these problems, the
SVM was utilized in our experiments.

III. Model Structure

We first describe a general framework for detecting malicious

Support Vector Machine to Detect Unknown Computer Viruses 101

executable code. Figure 1 illustrates the proposed
architecture. The framework is divided into 4 parts: (1)
application server, (2) Virtual Computer, (3) detection server,
and (4) virus detection firewall based on character code
scanning. Once detected, the operating system can be
designed to observe the behavior of the computer viruses.
This would require the system to contain a virtual
environment or machine. So the virtual operating system-
VMWare[7] was used in our experiments. The computer virus
would be executed in the virtual environment to learn its
behavior. In this environment, the virus would not destroy the
real detection system.

Before a file save to the application server, it will be scanned
by the virus detection firewall. If the file is infected with virus
then quarantine it. Otherwise if there is no malicious
information about the file, it will be replicated 2 copies. Then,
one copy will be sent to the application server, another one
will be sent to the detect server based on SVM detection
engine after extracting feature in the virtual computer. At the
following stage, the SVM detector check the copy again. If
the file is infected with unknown viruses, the application
server will be remind to remove the copy from its application
database. And then quarantine it in a special database or sent
it to an expert to analyze it by hand.

Bay Networks

User

User

User

Detect
Server

Virtual
Com puter

Applicai tion
Server

Router

HUB

F
irew

all

Figure 1. Architecture

IV. Classification algorithm

Virus detecting can be look as a binary classification problem.
Our detecting model is based on SVM, which is a kind of
machine learning method based statistical learning theory.
The advantage of this method is that its general capability can
be improved by using structural risk minimization principle.
That is to say, even using limited training sets, we can get a
relatively small error rate on independent testing sets. In
addition, since SVM is a convex problem, the local optimum
found by this method is also global optimum. Here we mainly
discuss the method of calculating decision hyperplane and
sample classification. First we label the training
data 1 1(,),..., (,) { 1}l l kx y x y R∈ × ± , 1,...,i l= , { 1, 1}iy ∈ + − ,

i kx R∈ . Suppose we have some hyperplane

0w x b⋅ + = (1)

in which separates the positive from the negative examples.
Where w is normal to the hyperplane, | | / || ||b w being the

perpendicular distance from the hyperplane to the origin,
|| ||w , the Euclidean norm of w , and w x⋅ , the dot product

between vector w and vector x in feature space. The
optimal hyperplane should be a function with maximal margin
between the vectors of the two classes , which subject to the
constraint as :

1

1
max () (,)

2

l

i i j j i j
i

W a y y K x xα α α
=

= −∑ ∑

1

. . 0, [0,], 1,..., .
l

i i i
i

st y C i lα α
=

= ∈ =∑ (2)

where iα is Lagrange multipliers, (,)i jK x x is kernel

function, C is a constant.
For a test sample x• we could use decision function :

1

() sgn((,))
l

i i i
i

f x y K x x bα
=

= +∑ (3)

to determine which class it is.

V. Viruses Detection Engine

A. Basic hypothesis
The area of coverage is characterized by the assumptions
mentioned below.
Assumption 1. Computer virus interacts with Operating
System at runtime.

Most types of malicious activities, such as accessing
network or file services, involve interactions with the OS.
However, some malicious activities, such as denying service
or corrupting data, can be done without interactions with the
OS, virus that limits itself to such activities will not be
detected by our system.
Assumption 2 In interacting with the Operating System,
Viruses use the Win32 APIs.

Instead of using the Win 32 APIs, it is possible to interact
with the OS through the Windows NT native API functions.
Our detection system can be extended to cover this type of
interaction.
Assumption 3. Once a infected program begins to execute,
the infection procedure ofvirus must immediately usurp
control of the computer, whereas the other procedure of the
virus may not always run.
Assumption 4. The Win32 APIs used by software execut-
ables can be effectively monitored at runtime.

B. Sample extracting
Our first intuition into the problem was to extract information
from the PE executables that would dictate its behavior.
Professor Forrest [8] had studied thoroughly about the role of
system call sequence of Unix OS in intrusion detection.
According to their studies, we choose the Windows API
function calls as the main feature in our experiments. To
extract resource information from Windows executables we
used GNU’s Bin–Utils [9]. Because more and more
sophisticated computer virus, which using polymorphic and

102 Bo-yun Zhang et. al

obfuscation techniques foil the commercial virus scanner.
Sometimes one cannot extract API function calls only using
the method above, so a tracing tool --APISPY.EXE was
designed in our experiments.

1) Size of window
By monitor the behavior of each sample in the Virtual
Computer, we could trace the API function calls of them.
After extracting the system call sequence , index the API
function in system call mapping file, then each function has a
index value, for example ‘35’ assign to function ‘openfile()’,
show as Fig 2(b). We save the numerical sequence correspond
to the api function trace into a data file and slide a window of
size k across the trace, recording each unique sequence of
length k that is encountered. For example, if k=4, one get the
unique sequences show detail as Fig 2(c).

Short sequence of system call represent the order of system
call by executing process, then, which value is the best for
short sequence length? Wenke Lee and Steven A.
Hofmey[10] found that one can not get useful message from
system call sequence when window size larger than 30. If take
conditional entropy and computational consumption into
consideration, short sequence length should be 6 or 7.

2) Extracting abnormal samples
We decide parameter value of SVM through training, so both
normal short sequence and abnormal sequence samples are
needed. System call short sequence sample can be gotten by
scanning the history of system call using k length slide
window, these samples are saved in a sample database.
Generally, the record in sample database is not larger

than| |k∑ , where∑ being API call sets,| |∑ , API function

number and k , the size of slide window.

lea ebx , eax
 m ov ecx , ebx
cal l subA (ecx)
test ecx , ecx
jz shor t loc _A
cal l subB (ebx)
jm p loc_B

L oc_A : m ov esi , var3
L oc_B : cal l M essageB ox

 call S end (var1 , esi)

subA p roc near
varx dw ord p tr 4
 Call O penF ile (”secur i ty .tx t”)
m o v ebx , eax
C all R ead F i le (ebx , varx)
 ret

subB p roc near
 Call R egO penK ey
 m ov ebx , eax
 Call R egS etV alue
 add ed i , eax
 Call R egC loseK ey
 ret

 index A P I F unction

 35 O penF ile()
 36 R eadF ile ()
 78 R egO penK ey ()
 79 R egS etV alue ()
 92 R egC loseK ey ()
 132 M essageB ox ()
 50 S end()

35 36 78 79 92 132 50

35 36 78 79 92 132 50

35 36 78 79 92 132 50

35 36 78 79 92 132 50

(a)

(b)

• c)

s1

s2

s3

s 4

sl ide

Figure 2. (a) An malicious code snippet (b) API call trace (c) When
window size k=4,obtaion short API call traces s1=35 36 78
79,s2=36 78 79 92,s3=78 79 92 132,s4=79 92 132 50.

When using k length slide windows to scan system call
history by the program that contain malicious code, we can
get a set of short sequences which including normal and
abnormal system calls. Since few activities are illegal,
abnormal short sequences is only a small part of the whole
short sequences. We use the following procedure to judge
whether API call sequence is legal or not.

After got short sequence of malicious program, we compare
it with records in sample database, if it matches with any item,
it will be deleted. Otherwise, the Hamming distance between
normal samples will be calculated. The similarity between
two sequences can be computed using a matching rule that
determines how the two sequences are compared. The
matching rule used here is based on Hamming distance, i.e.
the difference between two sequences i and j is indicated by
the Hamming distance (,)d i j between them. For each new

sequence i, we determine the minimal Hamming distance

min ()d i between i and the set of normal sequences:

min () min{ (,),d i d i j normal sequence j= ∀ }

The min ()d i value represents the strength of the anomalous

signal, i.e. how much it deviates from a known pattern. Note
that this measure is not dependent on trace length and is still
amenable to the use of thresholds for binary decision making.
If the rate of anomalous to normal sequences is AR , then the

average complexity of computing min ()d i per sequence is

(1) (1)(1)A AN k R k R− + − − ,which is ((1))AO k R N+ , where

k is the size of window, N is the number of normal sample in
dataset.

For a mismatched sequence i, we set thresholds on the
values, It will be regarded as anomalous any sequence i for
which min ()d i D≥ , where 1 D k≤ ≤ being the threshold

value. It is say if a sequence i of length k is sufficiently
different from all normal sequences, it can be flagged as
anomalous. So we obtain empirically the abnormal dataset.

C. Detection Method
The virus detecting method presented in this paper is a
supervising learning algorithm. Firstly, we marked the API
call sequence, then got the parameters value of SVM by
training. To Check a file, we trace the API call sequence, then
use k length slide window to divide the sequence into several
short sequences, these short sequences can be judged by SVM
classifier, abnormal short sequence will be marked, finally,
we can judge whether the file contains virus or not based on
the output of SVM classifier.

In reality, it is likely to be impossible to collect all normal
variations in behavior, so we must face the possibility that our
normal database will provide incomplete coverage of normal
behavior. If the normal were incomplete, false positives could
be the result. Moreover, the inaccuracy of the SVM itself also
needs to set some judge rules to improve the performance of

Support Vector Machine to Detect Unknown Computer Viruses 103

the detecting systems. So we judge whether a file contains
virus based on the number of abnormal API call short
sequence. If the number is larger than a predefined threshold,
the file has been infected by virus, otherwise not. We decide
the threshold value by training.

VI. Experiment Results

We estimate our results over data set in table 1. The malicious
executables were downloaded from http://vx.netlux.org and
http://www.cs. Columbia. edu / ids/mef/, the clean programs
were gathered from a freshly installed Windows 2000 server
machine running MS Office 2000 and labeled by a
commercial virus scanner with the correct class
label(malicious or benign) for our method. The pretreating
procedure of experiment data details as follow step:

(1) Tracing API call sequences from viruses set and benign
set. An api call tracing tool is programmed in our experiment.
It can hook all API function calls in Windows 2000 server
platform. (2) Disparting each API call sequence into short
trace by k –the size of sliding window. (3) Identifying the
abnormal short traces in the short sequence set of viruses. (4)
Choose parts of normal and abnormal short trace as training
data to train SVM, and the other as testing set. At last, we get
the distribution of the short traces database used in training
and testing in our experiment, show in table 2.

During the experiment, we use the software LIBSVM [11].
To evaluate our system we were interested in several
quantities: (1). False Negative, the number of malicious
executable examples classified as benign; (2). False Positives,
the number of benign programs classified as malicious
executables.

There are some common kernels mentioned in SVM, we
must decide which one to try first. Then the penalty parameter
C and kernel parameters are chosen. After compare with other
kernel, at last we choose Radial Basic Function:

2

2

|| ||
(,) exp()

x y
K x y

σ
−= −

There are two parameters while using RBF kernel: 21/σ

and C. It is not known beforehand which C and 21/σ are the
best for one problem. Consequently some kind of parameter
search must be done. So we try some variable group value of
(21/σ ,C) to test the classification performance of SVM.

In our experiments, there are 100 files in training dataset,
and 532 files in testing dataset. The dimension of feature
vector is k , which is the length of short API traces. We set the
value of threshold D is 3, then we test the detection engine
when k=6, 7 respectively. And the detail experiment result
shows in table 3 . In another experiment [12], we had used a
algorithm based on Fuzzy Pattern Recognition
algorithm(FPR) to classify the data set in table 1. That
algorithm had the lowest false positive rate, 4.45%. The
present method has the lowest false positive rate, 3.21%,
which has better detection rates than the algorithm based on
FPR. Notice that the detection rates of these two methods is
nearly equal, but the FPR algorithm use more training samples

than SVM algorithm. This shows that SVM algorithm is fit to
detect computer viruses when the viruses sample gathered is
difficult.

 Sample space Training set Testing set
Benign file 423 50 373

Malicious file 209 50 159
Sum 632 100 532

Table1. Sample data in Experiment.

Training data set Testing data set

Number of normal
traces

Number of
abnormal traces

Number of
normal traces

Number of
abnormal

traces
496 242 2766 876

Table 2. Distribution of the traces database used in the experiment

C 2σ

False Negative False Positive

 k = 6 k = 7 k = 6 k = 7
50 10 3.21% 4.02% 5.66% 7.54%
100 1 4.82% 5.63% 6.28% 5.66%
200 0.5 6.97% 7.50% 10.06% 11.32%

Table 3. Experimental result of detection system

VII. Conclusion

We presented a method for detecting previously undetectable
computer viruses. As our knowledge, this is the first time that
using support vector machine algorithm to detect malicious
codes. We showed this model’s detect accuracy by comparing
our results with other learning algorithms. Experiment result
shows that the present method could effectively use to
discriminate normal and abnormal API function call traces.
The detection performance of the model is still good even the
virus sample dataset size is small.

Acknowledgment

This work supported by the National Natural Science
Foundation of China under Grant No.60373023 , Hunan
Provincial Natural Science Foundation of China under Grant
No.04JJ6032 and the Scientific Research Fund of Hunan
Provincial Education Department of China under Grant
No.05B072. The authors would like to thank Dr. Hui Xia of
Hokkaido University for his helpful comments.

References

[1] Vapnik,V.N.: Statistaical learning theory. Springer, New
York(1998)

[2] Lo,R., Levitt,K., Olsson,R.: MCF: A Malicious Code
Filter. Computers & Security.14(1995)541-566

[3] Tesauro,G., Kephart,J., Sorkin,G.: Neural networks for
computer virus recognition.IEEE Expert. 8(1996)5-6

[4] Schultz,M., Eskin,E., Zadok,E., Stolfo,S.: Data mining
methods for detection of new malicious executables. In:
Needham,R., Abadi M, (eds):. Proceedings of the 2001
IEEE Symposium on Security and Privacy. Oakland,
CA: IEEE Computer Society Press (2001) 38-49

104 Bo-yun Zhang et. al

[5] Symantec. http://www. symantec. com / avcenter /
reference/ heuristc.pdf. (Last accessed: Jun 1.2004)

[6] Szappanos,G.: Are There Any Polymorphic Macro
Viruses at ALL (and What to Do with Them).in
Proceedings of the 12th International Virus Bulletin
Conference(2001)

[7] VMware. http://www.vmware.com. (Last accessed: 10,
Nov. 2003)

[8] Forrest,S., Hofmeyr, S. A., Somayaji, A.: Computer
immunology. Communications of the ACM. 10 (1997)
88–96

[9] Cygnus. http://sourceware. cygnus.com / cygwin (Last
accessed: 20, Dec. 2004)

[10] Lee,W., Dong,X.: Information-Theoretic measures for
anomaly detection. In: Needham,R., Abadi M, (eds):.
Proceedings of the 2001 IEEE Symposium on Security
and Privacy. Oakland, CA: IEEE Computer Society
Press (2001)130-143.

[11] LIBSVM. http://www.csie.ntu.edu.tw/~cjlin/. (Last
accessed: 18,Nov. 2004)

[12] Zhang,B., Yin,J., Hao,J.: Using Fuzzy Pattern
Recognition to Detect Unknown Malicious Executables
Code. In: Wang,L.,Jin,Y.(eds.):Fuzzy Systems and
Knowledge Discovery. LNAI,Vol.3613. Springer-
Verlag, Berlin Heidelberg New York(2005) 629-634

Author Biographies

Boyun Zhang born in YongZhou, Hunan, China on 1972,
received his B.S. degrees in physics education from Xiangtan
Normal University , Xiangtan, China, in 1994 and M.S.
degree in applied computer science from Hunan University,
Changsha, China in 2002. He is currently pursuing his PhD
degree at School of Computer Science, National University of
Defense Technology, Changsha, China. His current research
interests include network security and machine learning.

