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Abstract: A novel method based on support vector machine 

(SVM) is proposed for detecting computer virus. By utilizing 
SVM, the generalizing ability of virus detection system is still 
good even the sample dataset size is small. First, the research 
progress of computer virus detection is recalled and algorithm of 
SVM taxonomy is introduced. Then the model of a virus 
detection system based on SVM and virus detection engine are 
presented respectively. An experiment using system API 
function call trace is given to illustrate the performance of this 
model. Finally, comparison of detection ability between the 
above detection method and other is given. It is found that the 
detection system based on SVM needs less priori knowledge 
than other methods and can shorten the training time under the 
same detection performance condition. 
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I. Introduction 

Excellent technology exists for detecting known malicious 
executables. Software for virus detection has been quite 
successful, and programs such as McAfee Virus Scan and 
Norton AntiVirus are ubiquitous. These programs search 
executable code for known patterns, and this method is 
problematic. One shortcoming is that one must obtain a copy 
of a malicious program before extracting the pattern 
necessary for its detection. Obtaining copies of new or 
unknown malicious programs usually entail them infecting or 
attacking a computer system.  

In this paper, we propose a novel method to detect computer 
viruses through SVM [1]. Our efforts to address this problem 
have resulted in a fielded application, built using techniques 
from statistical pattern recognition and machine learning. The 
Viruses Classification System currently detects unknown 
malicious executables code without removing any 
obfuscation. To our knowledge, the experiment is the first 
time to established methods based on SVM applying to detect 
unknown computer viruses.  

In the following sections, we first describe related research 
in the area of computer viruses detection. Then we illustrate 
the architecture of our detect model in section III. Section IV 
introduces the classification algorithm. Section V details the 
method of extraction feature from program, and stating the 
detection engine work procedure. Section VI shows the 
implementation and experiment results. We state our 
conclusion in Section VII. 

II. Related work 

So far, there have been few attempts to use machine learning 
and data mining for the purpose of identifying new or 
unknown malicious code.  

In an early attempt, Lo et al. [2] conducted an analysis of 
several programs evidently by hand and identified tell-tale 
signs, which subsequently be used to filter new programs. 
Researchers at IBM's T.J.Watson Research Center have 
investigated neural networks for virus detection [3] and have 
incorporated a similar approach for detecting boot-sector 
viruses into IBM's Anti-Virus software. 

More recently, instead of focusing on boot-sector viruses, 
Schultz et al. [4] used data mining methods, such as naïve 
Bayes, to detect malicious code. The Bloodhound technology 
of Symantec Inc., uses heuristics for detecting malicious code 
[5]. Szappanos [6] used code normalization techniques to 
detect polymorphic viruses. Normalization techniques 
remove junk code & white spaces, and comments in programs 
before they generate virus signature. 

To improve the performance of the detector mentioned 
above, lots of malicious and benign codes as training dataset 
should be collected. And they would consume lots of times 
when training the classifiers. Aid to solve these problems, the 
SVM was utilized in our experiments. 

III. Model Structure 

We first describe a general framework for detecting malicious 
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executable code. Figure 1 illustrates the proposed 
architecture. The framework is divided into 4 parts: (1) 
application server, (2) Virtual Computer, (3) detection server, 
and (4) virus detection firewall based on character code 
scanning. Once detected, the operating system can be 
designed to observe the behavior of the computer viruses. 
This would require the system to contain a virtual 
environment or machine. So the virtual operating system- 
VMWare[7] was used in our experiments. The computer virus 
would be executed in the virtual environment to learn its 
behavior. In this environment, the virus would not destroy the 
real detection system. 

Before a file save to the application server, it will be scanned 
by the virus detection firewall. If the file is infected with virus 
then quarantine it. Otherwise if there is no malicious 
information about the file, it will be replicated 2 copies. Then, 
one copy will be sent to the application server, another one 
will be sent to the detect server based on SVM detection 
engine after extracting feature in the virtual computer. At the 
following stage, the SVM detector check the copy again. If 
the file is infected with unknown viruses, the application 
server will be remind to remove the copy from its application 
database. And then quarantine it in a special database or sent 
it to an expert to analyze it by hand. 
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Figure 1. Architecture 

IV. Classification algorithm 

Virus detecting can be look as a binary classification problem. 
Our detecting model is based on SVM, which is a kind of 
machine learning method based statistical learning theory. 
The advantage of this method is that its general capability can 
be improved by using structural risk minimization principle. 
That is to say, even using limited training sets, we can get a 
relatively small error rate on independent testing sets. In 
addition, since SVM is a convex problem, the local optimum 
found by this method is also global optimum. Here we mainly 
discuss the method of calculating decision hyperplane and 
sample classification. First we label the training 
data 1 1( , ),..., ( , ) { 1}l l kx y x y R∈ × ± , 1,...,i l= , { 1, 1}iy ∈ + − , 

i kx R∈ . Suppose we have some hyperplane 
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in which separates the positive from the negative examples. 
Where w  is normal to the hyperplane, | | / || ||b w being the 

perpendicular distance from the hyperplane to the origin, 
|| ||w , the Euclidean norm of w , and w x⋅ , the dot product 

between vector w  and vector x  in feature space. The 
optimal hyperplane should be a function with maximal margin 
between the vectors of the two classes , which subject to the 
constraint as : 
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where iα  is Lagrange multipliers, ( , )i jK x x  is kernel 

function, C is a constant. 
For a test sample x• we could use decision function : 
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to determine which class it is. 

V. Viruses Detection Engine 

A. Basic hypothesis 
The area of coverage is characterized by the assumptions 
mentioned below. 
Assumption 1. Computer virus interacts with Operating 
System at runtime. 

Most types of malicious activities, such as accessing 
network or file services, involve interactions with the OS. 
However, some malicious activities, such as denying service 
or corrupting data, can be done without interactions with the 
OS, virus that limits itself to such activities will not be 
detected by our system. 
Assumption 2 In interacting with the Operating System, 
Viruses use the Win32 APIs. 

Instead of using the Win 32 APIs, it is possible to interact 
with the OS through the Windows NT native API functions. 
Our detection system can be extended to cover this type of 
interaction. 
Assumption 3. Once a infected program begins to execute, 
the infection procedure ofvirus must immediately usurp 
control of the computer, whereas the other procedure of the 
virus may not always run. 
Assumption 4. The Win32 APIs used by software execut- 
ables can be effectively monitored at runtime. 
 
B. Sample extracting 
Our first intuition into the problem was to extract information 
from the PE executables that would dictate its behavior. 
Professor Forrest [8] had studied thoroughly about the role of 
system call sequence of Unix OS in intrusion detection. 
According to their studies, we choose the Windows API 
function calls as the main feature in our experiments. To 
extract resource information from Windows executables we 
used GNU’s Bin–Utils [9]. Because more and more 
sophisticated computer virus, which using polymorphic and 
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obfuscation techniques foil the commercial virus scanner. 
Sometimes one cannot extract API function calls only using 
the method above, so a tracing tool --APISPY.EXE was 
designed in our experiments. 
 
1) Size of window 
By monitor the behavior of each sample in the Virtual 
Computer, we could trace the API function calls of them. 
After extracting the system call sequence , index the API 
function in system call mapping file, then each function has a 
index value, for example ‘35’ assign to function ‘openfile( )’, 
show as Fig 2(b). We save the numerical sequence correspond 
to the api function trace into a data file and slide a window of 
size k across the trace, recording each unique sequence of 
length k that is encountered. For example, if k=4, one get the 
unique sequences show detail as Fig 2(c). 

Short sequence of system call represent the order of system 
call by executing process, then, which value is the best for 
short sequence length? Wenke Lee and Steven A. 
Hofmey[10] found that one can not get useful message from 
system call sequence when window size larger than 30. If take 
conditional entropy and computational consumption into 
consideration, short sequence length should be 6 or 7. 
 
2) Extracting abnormal samples 
We decide parameter value of SVM through training, so both 
normal short sequence and abnormal sequence samples are 
needed. System call short sequence sample can be gotten by 
scanning the history of system call using k length slide 
window, these samples are saved in a sample database. 
Generally, the record in sample database is not larger 

than| |k∑ , where∑ being API call sets,| |∑  , API function 

number and  k , the size of slide window. 
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Figure 2. (a) An malicious code snippet (b) API call trace (c) When 
window size k=4,obtaion short API call traces s1=35 36 78 
79,s2=36 78 79 92,s3=78 79 92 132,s4=79 92 132 50. 
 

When using k length slide windows to scan system call 
history by the program that contain malicious code, we can 
get a set of short sequences which including normal and 
abnormal system calls. Since few activities are illegal, 
abnormal short sequences is only a small part of the whole 
short sequences. We use the following procedure to judge 
whether API call sequence is legal or not. 

After got short sequence of malicious program, we compare 
it with records in sample database, if it matches with any item, 
it will be deleted. Otherwise, the Hamming distance between 
normal samples will be calculated. The similarity between 
two sequences can be computed using a matching rule that 
determines how the two sequences are compared. The 
matching rule used here is based on Hamming distance, i.e. 
the difference between two sequences i and j is indicated by 
the Hamming distance ( , )d i j  between them. For each new 

sequence i, we determine the minimal Hamming distance 

min ( )d i  between i and the set of normal sequences:  

min ( ) min{ ( , ),d i d i j normal sequence j= ∀  }  

The min ( )d i  value represents the strength of the anomalous 

signal, i.e. how much it deviates from a known pattern. Note 
that this measure is not dependent on trace length and is still 
amenable to the use of thresholds for binary decision making. 
If the rate of anomalous to normal sequences is AR  , then the 

average complexity of computing min ( )d i  per sequence is 

( 1) ( 1)(1 )A AN k R k R− + − −  ,which is ( ( 1))AO k R N+ , where 

k is the size of window, N is the number of normal sample in 
dataset. 

For a mismatched sequence i, we set thresholds on the 
values, It will be regarded as anomalous any sequence i for 
which min ( )d i D≥ , where 1 D k≤ ≤  being the threshold 

value. It is say if a sequence i  of length k is sufficiently 
different from all normal sequences, it can be flagged as 
anomalous. So we obtain empirically the abnormal dataset. 
 
C. Detection Method 
The virus detecting method presented in this paper is a 
supervising learning algorithm. Firstly, we marked the API 
call sequence, then got the parameters value of SVM by 
training. To Check a file, we trace the API call sequence, then 
use k length slide window to divide the sequence into several 
short sequences, these short sequences can be judged by SVM 
classifier, abnormal short sequence will be marked, finally, 
we can judge whether the file contains virus or not based on 
the output of SVM classifier. 

In reality, it is likely to be impossible to collect all normal 
variations in behavior, so we must face the possibility that our 
normal database will provide incomplete coverage of normal 
behavior. If the normal were incomplete, false positives could 
be the result. Moreover, the inaccuracy of the SVM itself also 
needs to set some judge rules to improve the performance of 
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the detecting systems. So we judge whether a file contains 
virus based on the number of abnormal API call short 
sequence. If the number is larger than a predefined threshold, 
the file has been infected by virus, otherwise not. We decide 
the threshold value by training. 

VI. Experiment Results 

We estimate our results over data set in table 1. The malicious 
executables were downloaded from http://vx.netlux.org and 
http://www.cs. Columbia. edu / ids/mef/, the clean programs 
were gathered from a freshly installed Windows 2000 server 
machine running MS Office 2000 and labeled by a 
commercial virus scanner with the correct class 
label(malicious or benign) for our method. The pretreating 
procedure of experiment data details as follow step:  

(1) Tracing API call sequences from viruses set and benign 
set. An api call tracing tool is programmed in our experiment. 
It can hook all API function calls in Windows 2000 server 
platform. (2) Disparting each API call sequence into short 
trace by k –the size of sliding window. (3) Identifying the 
abnormal short traces in the short sequence set of viruses. (4) 
Choose parts of normal and abnormal short trace as training 
data to train SVM, and the other as testing set. At last, we get 
the distribution of the short traces database used in training 
and testing in our experiment, show in table 2. 

During the experiment, we use the software LIBSVM [11]. 
To evaluate our system we were interested in several 
quantities: (1). False Negative, the number of malicious 
executable examples classified as benign; (2). False Positives, 
the number of benign programs classified as malicious 
executables.  

There are some common kernels mentioned in SVM, we 
must decide which one to try first. Then the penalty parameter 
C and kernel parameters are chosen. After compare with other 
kernel, at last we choose Radial Basic Function: 

2

2

|| ||
( , ) exp( )

x y
K x y

σ
−= −  

There are two parameters while using RBF kernel: 21/σ  

and C. It is not known beforehand which C and 21/σ  are the 
best for one problem. Consequently some kind of parameter 
search must be done. So we try some variable group value of 
( 21/σ ,C) to test the classification performance of SVM. 

In our experiments, there are 100 files in training dataset, 
and 532 files in testing dataset. The dimension of feature 
vector is k , which is the length of short API traces. We set the 
value of threshold D is 3, then we test the detection engine 
when k=6, 7 respectively. And the detail experiment result 
shows in table 3 . In another experiment [12], we had used a 
algorithm based on Fuzzy Pattern Recognition 
algorithm(FPR) to classify the data set in table 1. That 
algorithm had the lowest false positive rate, 4.45%. The 
present method has the lowest false positive rate, 3.21%, 
which has better detection rates than the algorithm based on 
FPR. Notice that the detection rates of these two methods is 
nearly equal, but the FPR algorithm use more training samples 

than SVM algorithm. This shows that SVM algorithm is fit to 
detect computer viruses when the viruses sample gathered is 
difficult. 

 
 Sample space Training set Testing  set 
Benign   file 423 50 373 

Malicious file 209 50 159 
Sum 632 100 532 

Table1. Sample data in Experiment. 
 

Training data set Testing data set 

Number  of normal 
traces 

Number  of 
abnormal traces 

Number  of 
normal traces 

Number  of 
abnormal 

traces 
496 242 2766 876 

Table 2.  Distribution of the traces database used in the experiment 
 
C 2σ  

False   Negative False  Positive 

  k = 6       k = 7 k = 6       k = 7 
50 10 3.21%     4.02% 5.66%     7.54% 
100 1 4.82%     5.63% 6.28%     5.66% 
200 0.5 6.97%     7.50% 10.06%    11.32% 

Table 3.  Experimental result of detection system 

 

VII. Conclusion 

We presented a method for detecting previously undetectable 
computer viruses. As our knowledge, this is the first time that 
using support vector machine algorithm to detect malicious 
codes. We showed this model’s detect accuracy by comparing 
our results with other learning algorithms. Experiment result 
shows that the present method could effectively use to 
discriminate normal and abnormal API function call traces. 
The detection performance of the model is still good even the 
virus sample dataset size is small. 
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